Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592939

RESUMO

In order to evaluate the potential of climate change mitigation measures on soil physiochemical properties, an experiment based on the application of five agroecological practices such as the addition of composted olive-mill wastes, recycling pruning residue, cover crops, organic insect manure, and reduced soil tillage, solely or combined, was conducted over two years (2020 to 2022) in a 48-year-old olive plantation. The results showed significant increases in soil water content during the spring and summer periods for the combined treatment (compost + pruning residue + cover crops) (ALL) compared to the control (CONT) by 41.6% and 51.3%, respectively. Also, ALL expressed the highest soil organic matter (4.33%) compared to CONT (1.65%) at 0-10 cm soil depth. When comparing soil nutrient contents, ALL (37.86 mg kg-1) and cover crops (COVER) (37.21 mg kg-1) had significant increases in soil nitrate compared to CONT (22.90 mg kg-1), the lowest one. Concerning exchangeable potassium, ALL (169.7 mg kg-1) and compost (COMP) (168.7 mg kg-1) were higher than CONT (117.93 mg kg-1) at the 0-10 cm soil depth and had, respectively an increase of 100.9% and 60.7% in calcium content compared to CONT. Over the experimental period, the implementation of the five agroecological management practices resulted in enhanced soil fertility. In a long-term Mediterranean context, this study suggests that these sustainable practices would significantly benefit farmers by improving agroecosystem services, reducing reliance on synthetic fertilizers, optimizing irrigation water use, and ultimately contributing towards a circular economy.

2.
Front Genet ; 14: 1298565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111682

RESUMO

The genetic relationships between Greek wild olive tree populations and cultivars were investigated. A total of 219 wild genotypes and 67 cultivar genotypes were analyzed by employing 10 SSR markers. Data evidenced that the wild populations exhibited high levels of genetic diversity and exclusively host 40% of the total number of alleles detected. Inbreeding was observed within populations, probably as a consequence of their fragmented spatial distribution. The genetic differentiation between cultivars and wild individuals, as well as within wild populations, was low. Nevertheless, three gene pools of wild trees were detected, corresponding to the geographical areas of Northeastern Greece, Peloponnese-Crete and Epirus. Most cultivars clustered in a separate group, while the rest of them formed a heterogenous group with membership coefficients akin to the three wild olive clusters. Regarding the history of olive cultivation in Greece, bidirectional gene flow was detected between populations of Peloponnese-Crete and the gene pool that composes some of Greece's most important cultivars, such as "Koroneiki" and "Mastoidis", which is inferred as an indication of a minor domestication event in the area. A strategy for the protection of Greek-oriented olive genetic resources is proposed, along with suggestions for the utilization of the genetically diverse wild resources with regard to the introgression of traits of agronomical interest to cultivars.

3.
Plants (Basel) ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653843

RESUMO

The olive tree (Olea europaea L.) is the main fruit tree in most of the arid and semi-arid regions of Tunisia, which is where the problem of salinity is more pronounced. Salinity is one of the main factors that affects the productivity of olive trees, so the objective of this experiment was to study the effects of salinity on the photosynthesis, water relations, mineral status, and enzymatic activity of two cultivars of Olea europaea L., 'Chemlali' and 'Koroneiki'. The trial was conducted under controlled conditions in a greenhouse for a period of 49 days and included two treatments: T0 control and T100 (irrigation with 100 mM of NaCl solution). Under salinity stress, the photosynthesis, stomatal conductance, and leaves of both cultivars were negatively affected. 'Chemlali' showed greater tolerance to NaCl salinity, based on a progressive decrease in osmotic potential (Ψπ) followed by a progressive and synchronous decrease in gs, without a comparable decrease in photosynthesis. The water use efficiency (WUE) improved as a result. In addition, the K+/Na+ ratio in 'Chemlali' rose. This appears to be crucial for managing stress. Conversely, enzymatic activity showed an accumulation of glutathione peroxidase (GPX) in stressed plants. The catalase (CAT) and ascorbate peroxidase (APX) content decreased in both stressed varieties. It can be concluded that the cultivar 'Koroneiki' is more susceptible to salt stress than the cultivar 'Chemlali', because the accumulation of GPX and the decreases in CAT and APX were more pronounced in this cultivar.

4.
Plant J ; 116(1): 303-319, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164361

RESUMO

Olive tree (Olea europaea L. subsp. europaea var. europaea) is one of the most important species of the Mediterranean region and one of the most ancient species domesticated. The availability of whole genome assemblies and annotations of olive tree cultivars and oleaster (O. europaea subsp. europaea var. sylvestris) has contributed to a better understanding of genetic and genomic differences between olive tree cultivars. However, compared to other plant species there is still a lack of genomic resources for olive tree populations that span the entire Mediterranean region. In the present study we developed the most complete genomic variation map and the most comprehensive catalog/resource of molecular variation to date for 89 olive tree genotypes originating from the entire Mediterranean basin, revealing the genetic diversity of this commercially significant crop tree and explaining the divergence/similarity among different variants. Additionally, the monumental ancient tree 'Throuba Naxos' was studied to characterize the potential origin or routes of olive tree domestication. Several candidate genes known to be associated with key agronomic traits, including olive oil quality and fruit yield, were uncovered by a selective sweep scan to be under selection pressure on all olive tree chromosomes. To further exploit the genomic and phenotypic resources obtained from the current work, genome-wide association analyses were performed for 23 morphological and two agronomic traits. Significant associations were detected for eight traits that provide valuable candidates for fruit tree breeding and for deeper understanding of olive tree biology.


Assuntos
Olea , Olea/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Mapeamento Cromossômico , Genômica
5.
Plants (Basel) ; 11(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684274

RESUMO

Morphological characterization of olive (Olea europaea L.) varieties to detect desirable traits has been based on the training of expert panels and implementation of laborious multiyear measurements with limitations in accuracy and throughput of measurements. The present study compares two- and three-dimensional imaging systems for phenotyping a large dataset of 50 olive varieties maintained in the National Germplasm Depository of Greece, employing this technology for the first time in olive fruit and endocarps. The olive varieties employed for the present study exhibited high phenotypic variation, particularly for the endocarp shadow area, which ranged from 0.17−3.34 cm2 as evaluated via 2D and 0.32−2.59 cm2 as determined by 3D scanning. We found significant positive correlations (p < 0.001) between the two methods for eight quantitative morphological traits using the Pearson correlation coefficient. The highest correlation between the two methods was detected for the endocarp length (r = 1) and width (r = 1) followed by the fruit length (r = 0.9865), mucro length (r = 0.9631), fruit shadow area (r = 0.9573), fruit width (r = 0.9480), nipple length (r = 0.9441), and endocarp area (r = 0.9184). The present study unraveled novel morphological indicators of olive fruits and endocarps such as volume, total area, up- and down-skin area, and center of gravity using 3D scanning. The highest volume and area regarding both endocarp and fruit were observed for 'Gaidourelia'. This methodology could be integrated into existing olive breeding programs, especially when the speed of scanning increases. Another potential future application could be assessing olive fruit quality on the trees or in the processing facilities.

7.
Plants (Basel) ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34834737

RESUMO

The olive tree of Vouves in Crete, is considered the oldest producing olive tree in the world with an estimated age exceeding 4000 years. In the present study, we sequenced two samples (from the bottom and the top of the tree) to elucidate the genetic relation of this ancient tree with other olive cvs as well as to gain some insights about its origin. Our results showed that both samples have different genetic origins, proving that this ancient tree has been grafted at least one time. On the basis of whole genome sequences the sample from the top of the Vouves tree showed relation of the same order than half-siblings to one accession corresponding to the present-day Greek cv 'Mastoidis'. Nevertheless, in the framework of a microsatellite analysis it was found to cluster with the 'Mastoidis' samples. The Vouves rootstock (bottom sample) showed a clear grouping with the oleaster samples in a similar way to that of 'Megaritiki' Greek cv although it does not show any signal of introgression from them. The genomic analyses did not show a strong relation of this sample with the present-day Greek cvs analyzed in this study so it cannot be proved that it has been used as a source for cultivated olive tree populations represented by available genome sequences. Nevertheless, on the basis of microsatellite analyses, the Vouves rootstock showed affinity with two present-day Greek cvs, one "ancient" rootstock from continental Greece as well as monumental trees from Cyprus. The analysis of the impact of the variants in the gene space revealed an enrichment of genes associated to pathways related with carbohydrate and amino acid metabolism. This is in agreement with what has been found before in the sweep regions related with the process of domestication. The absence of oleaster gene flow, its old age and its variant profile, similar to other cultivated populations, makes it an excellent reference point for domestication studies.

8.
Plants (Basel) ; 10(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34579470

RESUMO

The 'pollen test' and 'fruit set test' following controlled crossing combinations of parents are the most commonly used methods for pollination incompatibility studies in Olea europaea L. Self-incompatibility (SI), with diagnoses based on the pollen test and pollen germination, indicating self-compatibility, is not always followed by fruit set in this species. To solve this dispute, we have reconciled all observations into a new model. Mismatches between field and laboratory data and between methods are resolved by the dual-successive-screen model (DSSM) supposing two different loci for the expression of the two SI mechanisms. Pollen/stigma is controlled by diallelic SI, or DSI, inferring two G1 and G2 compatibility/incompatibility (C/I) groups for varieties, whereas pollen tubes in ovaries are controlled by poly-allelic SI or PASI with twenty C/I groups. To explain the selfing of varieties, we have suggested that some determinants in the pollen tube and stigma are unstable and degrade (DS-D for degradation of S-determinant) after three to five days, enabling some pollen tubes to avoid being rejected, hence reaching ovules. DSI and PASI in the DSSM and DS-D mechanisms, plus the andromonoecy of the olive tree, complexify SI studies. Inferences from DSSM and DS-D mechanisms in olive orchard practice are detailed.

9.
Plant Dis ; 105(11): 3623-3635, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34003032

RESUMO

In November 2019, a severe outbreak of fruit rot was observed in olive orchards in Crete, southern Greece. Symptoms appeared primarily on fruits and stalks, resembling those caused by anthracnose. Typical symptoms were fruit rot, shrinkage, and mummification, associated commonly with stalk discoloration and fruit drop. Disease incidence was estimated at up to 100% in some cases, and an unprecedented increase in olive oil acidity reaching up to 8% (percentage of oleic acid) in severely affected olive groves was recorded. Thirty-two olive groves were then surveyed, and samples of fruit, stalk, leaf, and shoot were collected. Visual, stereoscopic, and microscopic observations revealed several fungi belonging to the genera Alternaria, Botryosphaeria, Capnodium, Colletotrichum, Fusarium, and Pseudocercospora. Fungal infection in fruits was commonly associated with concomitant infestation by the olive fruit fly Bactrocera oleae along with increased air temperature and relative humidity conditions that prevailed in October and November 2019. Twenty representative fungal strains isolated from symptomatic fruits and stalks were characterized by morphological, physiological, and molecular analyses. By internal transcribed spacer regions of ribosomal DNA region and translation elongation factor 1-α gene sequencing analysis, these isolates were identified as Alternaria spp., A. infectoria, Botryosphaeria dothidea, Colletotrichum boninense sensu lato, Fusarium lateritium, F. solani species complex and Stemphylium amaranthi. Pathogenicity tests on punctured fruits revealed that all isolates were pathogenic; however, F. solani isolates along with B. dothidea were the most virulent, and wounds were necessary for efficient fungal infection. Moreover, as few as 10 spores of F. solani were sufficient to cause significant infection in punctured fruits. F. solani was also capable of infecting olive fruits in the presence of B. oleae, with no additional wounding, in artificial inoculation experiments. Moreover, it was capable of colonizing and affecting olive blossoms. Further analyses of olive oil extracted from fruits artificially inoculated with F. solani indicated a significant increase in oil acidity, K232, K270, and peroxide value, whereas total phenol content was significantly decreased. To the best of our knowledge, this is the first report of F. solani associated with olive fruit rot and olive oil degradation worldwide.


Assuntos
Colletotrichum , Olea , Colletotrichum/genética , Grécia , Azeite de Oliva , Doenças das Plantas
10.
Plant Physiol Biochem ; 153: 92-105, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32485617

RESUMO

High relative air humidity (RH ≥ 85%) is frequent in controlled environments, and not uncommon in nature. In this review, we examine the high RH effects on plants with a special focus on stomatal characters. All aspects of stomatal physiology are attenuated by elevated RH during leaf expansion (long-term) in C3 species. These include impaired opening and closing response, as well as weak diel oscillations. Consequently, the high RH-grown plants are not only vulnerable to biotic and abiotic stress, but also undergo a deregulation between CO2 uptake and water loss. Stomatal behavior of a single leaf is determined by the local microclimate during expansion, and may be different than the remaining leaves of the same plant. No effect of high RH is apparent in C4 and CAM species, while the same is expected for species with hydropassive stomatal closure. Formation of bigger stomata with larger pores is a universal response to high RH during leaf expansion, whereas the effect on stomatal density appears to be species- and leaf side-specific. Compelling evidence suggests that ABA mediates the high RH-induced stomatal malfunction, as well as the stomatal size increase. Although high RH stimulates leaf ethylene evolution, it remains elusive whether or not this contributes to stomatal malfunction. Most species lose stomatal function following mid-term (4-7 d) exposure to high RH following leaf expansion. Consequently, the regulatory role of ambient humidity on stomatal functionality is not limited to the period of leaf expansion, but holds throughout the leaf life span.


Assuntos
Umidade , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Ácido Abscísico , Folhas de Planta/fisiologia , Água
11.
Sci Total Environ ; 654: 616-632, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447600

RESUMO

Water scarcity in the Mediterranean region is becoming a growing concern, threatening the viability of agriculture, which is one of the main economic sectors in many areas. The design of an optimal irrigation management plan, based on state-of-the-art measuring and modeling tools, can effectively contribute towards water saving efforts and potentially address the water scarcity issue in the region. This paper describes the development and application of an integrated decision-making system for the management of water resources of olive and citrus crops in the North of Chania, Crete, Greece. The system integrates different field measurements, for example 2088 soil moisture measurements taken within the study area, and modeling approaches to simulate flow in the unsaturated zone. After the successful calibration and validation of the model, the spatio-temporal representation of soil moisture and pore water pressure were used as guidance for developing optimal irrigation plans, taking into account the water needs of olive and citrus crops, aiming to maximize crop yield, agricultural income, and promote water saving efforts. According to the results, water use can be reduced by up to 36% during the dry season, compared to conventional irrigation practices for citrus trees. Similarly, for olive trees, the reduction in water use can reach up to 41%. The proposed methodology can also be cost-effective in terms of water value, saving about 40% from the typical water cost for irrigation in the study area. The impact of climate change on water resources availability in the area and water conservation efforts were also investigated for the period of (2019-2030). Results show that, comparing the Baseline, RCP 8.5 and RCP 4.5 climatic scenarios, the highest savings on average are observed for emission scenario RCP 4.5 with 53.3% water savings for olive trees and 46.7% for citrus trees.


Assuntos
Irrigação Agrícola , Citrus , Mudança Climática , Conservação dos Recursos Hídricos , Olea , Recursos Hídricos , Produtos Agrícolas , Tomada de Decisões , Grécia , Árvores
12.
Evol Appl ; 11(8): 1465-1470, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151053

RESUMO

This study was carried out to examine the validity of previous studies on the intercompatibility of olive and to compare the approach and techniques used for proposing the diallelic self-incompatibility system and the sporophytic self-incompatibility system. Analysis of the literature indicates that the mating system of the olive tree is a controversial issue and requires further studies to clearly and fully comprehend it. All possible approaches should be used to maximize reliability of the final conclusions on the olive mating system.

13.
Evol Appl ; 10(9): 855-859, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29151876

RESUMO

The new self-incompatibility system (SI) was presented by Saumitou-Laprade, Vernet, Vekemans et al. (2017). Evolutionary Applications based on 89 crosses between varieties in the olive tree. Four main points are not clear. We are examining here as follows: (i) the assertion that the self-incompatibility system is sporophytic was not sustained by pollen germination data; (ii) surprisingly, the new model does not explain that about one-third of pairwise combinations of olive varieties leads to asymmetric fruit setting; (iii) DNA preparation from one seed may contain two embryos, and thus, embryos should be separated before seed extraction; (iv) although effective self-fertility in olive varieties was reported by many studies, the DSI model fails to explain self-fertility in some olive varieties. Moreover, we cannot discuss result data, as science cannot be verified because variety names were encoded, this does not allow comparison of data with previous works. The DSI model on olive self-incompatibility should explain more features than the model based on four dominance levels shared by six S-alleles. Perspectives for orchard management based on this model may face serious limitations. An olive variety does not have a fifty percent chance of cross-incompatibility, but surely fewer, and thus, the sporophytic system limits fruit production. Evolutionary perspectives of self-incompatibility in Oleaceae should include data from the Jasmineae tribe that displays heterostyly SI.

14.
J Environ Manage ; 189: 150-159, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28013089

RESUMO

Fertilizers have undoubtedly contributed to the significant increase in yields worldwide and therefore to the considerable improvement of quality of life of man and animals. Today, attention is focussed on the risks imposed by agricultural fertilizers. These effects include the dissolution and transport of excess quantities of fertilizer major- and trace-elements to the groundwater that deteriorate the quality of drinking and irrigation water. In this study, a map for the Fertilizer Water Pollution Index (FWPI) was generated for assessing the impact of agricultural fertilizers on drinking and irrigation water quality. The proposed methodology was applied to one of the most intensively cultivated with tree crops area in Crete (Greece) where potential pollutant loads are derived exclusively from agricultural activities and groundwater is the main water source. In this region of 215 km2, groundwater sampling data from 235 wells were collected over a 15-year time period and analyzed for the presence of anionic (ΝΟ-3, PO-34) and cationic (K+1, Fe+2, Mn+2, Zn+2, Cu+2, B+3) fertilizer trace elements. These chemicals are the components of the primary fertilizers used in local tree crop production. Eight factors/maps were considered in order to estimate the spatial distribution of groundwater contamination for each fertilizer element. The eight factors combined were used to generate the Fertilizer Water Pollution Index (FWPI) map indicating the areas with drinking/irrigation water pollution due to the high groundwater contamination caused by excessive fertilizer use. Moreover, by taking into consideration the groundwater flow direction and seepage velocity, the pathway through which groundwater supply become polluted can be predicted. The groundwater quality results show that a small part of the study area, about 8 km2 (3.72%), is polluted or moderately polluted by the excessive use of fertilizers. Considering that in this area drinking water sources (wells) are located, this study highlights an analytic method for delineation wellhead protection zones. All these approaches were incorporated in a useful GIS decision support system that aids decision makers in the difficult task of protection groundwater resources.


Assuntos
Irrigação Agrícola/métodos , Água Potável , Fertilizantes , Sistemas de Informação Geográfica , Poluição da Água/análise , Agricultura/métodos , Produtos Agrícolas , Monitoramento Ambiental/métodos , Fertilizantes/análise , Grécia , Água Subterrânea/análise , Qualidade da Água , Abastecimento de Água , Poços de Água
15.
Plant Dis ; 101(11): 1929-1940, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30677320

RESUMO

A two-year survey was conducted to identify fungi associated with wood decay in a range of tree species and grapevine. Fifty-eight fungal strains isolated from plants of 18 species showing typical wood decay symptoms were characterized by morphological, physiological, and molecular analyses. By 5.8S rRNA gene-ITS sequencing analysis, these isolates were classified into 25 distinct operational taxonomic units, including important phytopathogenic species of the phyla Pezizomycotina and Agaricomycotina, such as Fomitiporia, Inonotus, Phellinus, Inocutis, Fuscoporia, Trametes, Fusarium, Eutypa, Phaeomoniella, Phaeoacremonium, and Pleurostomophora spp. The white rot basidiomycetes Fomitiporia mediterranea (20 isolates, 34.5%) and Inonotus hispidus (6 isolates, 10.3%) were the most prevalent. Pathogenicity tests revealed for the first time that certain fungal species of the genera Fomitiporia, Inonotus, Phellinus, Pleurostomophora, and Fusarium caused wood infection of various tree species in Greece and worldwide. To the best of our knowledge, this is the first report of F. mediterranea as the causal agent of wood decay in pear, pomegranate, kumquat, and silk tree. This is also the first record of Inonotus hispidus, Phellinus pomaceus, Pleurostomophora richardsiae, and Fusarium solani in apple, almond, avocado, and mulberry tree, respectively, whereas P. richardsiae was associated with wood infection of olive tree for the first time in Greece. Cross pathogenicity tests with F. mediterranea strains originated from grapevine applied on other woody hosts and from olive on grapevine demonstrated partial host specificity of the fungus. The potential of F. mediterranea to transinfect hosts other than those originated, along with the host range extension of the fungus, is discussed.


Assuntos
Fungos , Árvores , Vitis/microbiologia , Madeira , Fungos/fisiologia , Grécia , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Árvores/microbiologia , Madeira/microbiologia
16.
J Environ Manage ; 89(2): 99-109, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17905510

RESUMO

Five organic Sloping and Mountainous Olive Plantation Production Systems (SMOPS) have been studied in four olive-producing areas in four European countries (Spain, Italy, Greece and Portugal). Results indicate that these SMOPS provide ecological, economic and social benefits to the regions in which they are located, although most of these benefits are not strictly limited to the organic production systems. Erosion control and organic matter balance remain significant issues in four of the SMOPS and we suggest that subsidy support should be conditional on the implementation of additional soil and water conservation measures that should be provided with specific funding. Most of the SMOPS will remain dependent on a similar level of support in order for olive production to remain economically feasible. The lower profitability compared to non-organic olive production systems suggests that there is limited scope for expansion of organic olive production, although in the study areas where there is little such production, such as Western Crete (Greece) and Basilicata-Salerno (Italy) the scope remains great. The analysis of the reasons for the beneficial effects of olive cultivation in the areas studied indicates that in most cases soil management techniques adopted in or recommended for organic production systems could provide similar benefits in other production systems as well.


Assuntos
Agricultura/economia , Agricultura/métodos , Conservação dos Recursos Naturais , Olea/crescimento & desenvolvimento , Solo/normas , Altitude , Análise Custo-Benefício , Custos e Análise de Custo , Ecossistema , Humanos , Região do Mediterrâneo , Fatores Socioeconômicos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...